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Password database breaches

2https://www.cnet.com/how-to/protect-yourself-from-the-latest-database-breach/

https://www.cnet.com/how-to/protect-yourself-from-the-latest-database-breach/


Phishing

3https://www.scmagazine.com/recent-phishing-attacks-reportedly-capitalize-on-office-365-security-holes/article/684453/

https://www.scmagazine.com/recent-phishing-attacks-reportedly-capitalize-on-office-365-security-holes/article/684453/


Password reuse

4
*survey of 1,000 smartphone users in 2017

https://keepersecurity.com/assets/pdf/Keeper-Mobile-Survey-Infographic.pdf

https://keepersecurity.com/assets/pdf/Keeper-Mobile-Survey-Infographic.pdf


What happens on the server?

5

Browser

Web Server

credentials

[secure channel

e.g. HTTPS]

?



Storing passwords
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Password database breach

7

Browser

Web Server

password (p)

[secure channel]

f(p,s), s

f

salt (s)

=?

f(p,s), s

Offline guessing: guess passwords, apply f(), compare to leaked database.



Trusted Execution Environments

TEE features

• Isolated execution

• Sealed storage

• Remote attestation

Available hardware TEEs

• ARM TrustZone

• Intel SGX
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key (k)

Storing passwords securely
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key (k)

Web Server

Compromised server (or Phishing)
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web page

Man-in-the-Middle: intercept passwords in transit.
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Web Server

Transferring passwords securely
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web page

• Verify TEE via remote attestation

• Send passwords directly to TEE
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Web Server

Actively malicious server
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Online guessing: guess passwords, send to TEE, compare to database.
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Web Server

Processing passwords securely
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Problem definition

Adversary capabilities

• Access passwords database

• Modify web content

• Access server-client communication

• Execute server-side code

• Launch phishing attacks

Requirements

• Password protection

a) Passwords can only be obtained through guessing

b) Offline guessing must be computationally infeasible

c) Online guessing must be throttled

• User awareness

Design goals

• Minimal performance overhead

• Minimal software changes

• Ease of upgrade

• Backup and recovery
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SafeKeeper
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SafeKeeper – server side
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SafeKeeper – server side

Password processing

• Key generated in enclave

• CMAC from sgx_tcrypto library

- 128 bit key

- AES-NI hardware acceleration

Rate limiting

• Per-user rate limiting based on salt

• In-TEE map of salts and attempts

- Uses SGX trusted time
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SafeKeeper – server side

PHP-CPP

• C++ library for writing PHP extensions 

http://www.php-cpp.com/

C++ Library

• Enclave initialization

• Sealed data storage/retrieval
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SafeKeeper – server side

PHPass library

• Used by WordPress, Joomla, etc.

• Default: multi-round MD5 (!)

Enhanced to use our SGX enclave
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WordPress using SafeKeeper
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“WordPress was used by more than 27.5% of the top 10 million websites as of February 2017”

https://w3techs.com/technologies/overview/content_management/all/

https://w3techs.com/technologies/overview/content_management/all/


Performance

Scalability (PHPass)

• Unmodified: 446 (±10) passwords/second

• SafeKeeper: 1653 (±70) passwords/second

Scalability (Enclave only)

• 101,337 (±4186) passwords/second

Memory Requirements

• 110 MB for in-enclave map of 1 million users
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Setup: Intel Core i5 6500 3.2 GHz, 8 GB RAM, Ubuntu 16.04



Deployability

Software changes

• Drop-in replacement for hash function in PHPass

• Fewer than 10 lines of PHPass code changed

Upgrade path

• Can transparently upgrade existing databases without user input

Backup and recovery

• Can be distributed across multiple enclaves for scalability and failure tolerance
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Problem definition

Adversary capabilities

• Access passwords database

• Modify web content

• Access server-client communication

• Execute server-side code

• Launch phishing attacks

Requirements

• Password protection

a) Passwords can only be obtained through guessing

b) Offline guessing must be computationally infeasible

c) Online guessing must be throttled

• User awareness

Design goals

• Minimal performance overhead

• Minimal software changes

• Ease of upgrade

• Backup and recovery
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SafeKeeper Browser Add-on
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SafeKeeper Browser Add-on
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Can users use this effectively?



User study

86-participant on-site user study

Participants recruited using:

• Social media

• Email lists

Broad range of disciplines:

• Computer science

• MBA

• Design

• Consumer psychology

• …
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Age

18 – 28 years 81%

29 – 38 years 19%

Highest qualification

High school 9%

Bachelors 41%

Masters 34%

PhD 2%

Not specified 14%

Gender

Male 72%

Female 28%



User study

Main study

• 64 participants

Follow-up study

• 20 participants, 2 months later

Control group

• 22 participants, no instructions

# Protected Type of spoofing

6 No None

7 No Password field highlighted

3 No
Password field highlighted after 

time delay

4 Yes None

5 Yes Other fields highlighted
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“Does this website use SafeKeeper to protect your password?”



Attempted UI spoofing
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Attempted UI Spoofing
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Attempted UI Spoofing
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Main study results

Average effectiveness: 87%
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Follow-up study results

Main study effectiveness: 93% Follow-up study effectiveness: 91%
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Control group results

Control group effectiveness: 74%
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Future work: Protecting email addresses
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Conclusions

• TEEs can help to protect password databases

• Can be integrated into existing systems

• Can achieve web-scale performance

• Can protect real users

• Potential for future work
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https://ssg.aalto.fi/projects/passwords/

https://ssg.aalto.fi/projects/passwords/

