
Protecting Web Passwords
from Rogue Servers

using TEEs

Klaudia Krawiecka, Arseny Kurnikov, Andrew Paverd,

Mohammad Mannan, N. Asokan

Password database breaches

2https://www.cnet.com/how-to/protect-yourself-from-the-latest-database-breach/

https://www.cnet.com/how-to/protect-yourself-from-the-latest-database-breach/

Phishing

3https://www.scmagazine.com/recent-phishing-attacks-reportedly-capitalize-on-office-365-security-holes/article/684453/

https://www.scmagazine.com/recent-phishing-attacks-reportedly-capitalize-on-office-365-security-holes/article/684453/

Password reuse

4
*survey of 1,000 smartphone users in 2017

https://keepersecurity.com/assets/pdf/Keeper-Mobile-Survey-Infographic.pdf

https://keepersecurity.com/assets/pdf/Keeper-Mobile-Survey-Infographic.pdf

What happens on the server?

5

Browser

Web Server

credentials

[secure channel

e.g. HTTPS]

?

Storing passwords

6

Browser

Web Server

password (p)

[secure channel]

f(p,s), s

f

salt (s)

=?

Password database breach

7

Browser

Web Server

password (p)

[secure channel]

f(p,s), s

f

salt (s)

=?

f(p,s), s

Offline guessing: guess passwords, apply f(), compare to leaked database.

Trusted Execution Environments

TEE features

• Isolated execution

• Sealed storage

• Remote attestation

Available hardware TEEs

• ARM TrustZone

• Intel SGX

8

Rich Operating System

App 2

TEE

TEE

App 1

Hardware

key (k)

Storing passwords securely

9

Browser

Web Server

f(k,p,s), s

f
password (p)

[secure channel]

salt (s)

=?(k)

• Use a keyed one-way function

• Protect the key in a TEE

TEE

key (k)

Web Server

Compromised server (or Phishing)

10

Browser

f(k,p,s), s

f
password (p) =?(k)

web page

Man-in-the-Middle: intercept passwords in transit.

key (k)

Web Server

Transferring passwords securely

11

Browser

f(k,p,s), s

f
password (p) =?(k)

web page

• Verify TEE via remote attestation

• Send passwords directly to TEE

key (k)

Web Server

Actively malicious server

12

Browser

f(k,p,s), s

f

password guess (p)

=?(k)

salt (s)

Online guessing: guess passwords, send to TEE, compare to database.

key (k)

Web Server

Processing passwords securely

13

Browser

f(k,p,s), s

f

password guess (p)

=?(k)

• Rate-limiting in the TEE

(but can’t use User ID)

salt (s)

Problem definition

Adversary capabilities

• Access passwords database

• Modify web content

• Access server-client communication

• Execute server-side code

• Launch phishing attacks

Requirements

• Password protection

a) Passwords can only be obtained through guessing

b) Offline guessing must be computationally infeasible

c) Online guessing must be throttled

• User awareness

Design goals

• Minimal performance overhead

• Minimal software changes

• Ease of upgrade

• Backup and recovery

14

SafeKeeper

15

Browser

Web Server

credentials

Server-side password

protection service
Client-side browser

extension

SafeKeeper – server side

16

SGX enclave

C++ library

PHP-C++

binding

PHPass

integration

SafeKeeper – server side

Password processing

• Key generated in enclave

• CMAC from sgx_tcrypto library

- 128 bit key

- AES-NI hardware acceleration

Rate limiting

• Per-user rate limiting based on salt

• In-TEE map of salts and attempts

- Uses SGX trusted time

17

SGX enclave

C++ library

PHP-C++

binding

PHPass

integration

SafeKeeper – server side

PHP-CPP

• C++ library for writing PHP extensions

http://www.php-cpp.com/

C++ Library

• Enclave initialization

• Sealed data storage/retrieval

18

SGX enclave

PHP-C++

binding

PHPass

integration

C++ library

SafeKeeper – server side

PHPass library

• Used by WordPress, Joomla, etc.

• Default: multi-round MD5 (!)

Enhanced to use our SGX enclave

19

SGX enclave

C++ library

PHP-C++

binding

PHPass

integration

WordPress using SafeKeeper

20

“WordPress was used by more than 27.5% of the top 10 million websites as of February 2017”

https://w3techs.com/technologies/overview/content_management/all/

https://w3techs.com/technologies/overview/content_management/all/

Performance

Scalability (PHPass)

• Unmodified: 446 (±10) passwords/second

• SafeKeeper: 1653 (±70) passwords/second

Scalability (Enclave only)

• 101,337 (±4186) passwords/second

Memory Requirements

• 110 MB for in-enclave map of 1 million users

21

Setup: Intel Core i5 6500 3.2 GHz, 8 GB RAM, Ubuntu 16.04

Deployability

Software changes

• Drop-in replacement for hash function in PHPass

• Fewer than 10 lines of PHPass code changed

Upgrade path

• Can transparently upgrade existing databases without user input

Backup and recovery

• Can be distributed across multiple enclaves for scalability and failure tolerance

22

Problem definition

Adversary capabilities

• Access passwords database

• Modify web content

• Access server-client communication

• Execute server-side code

• Launch phishing attacks

Requirements

• Password protection

a) Passwords can only be obtained through guessing

b) Offline guessing must be computationally infeasible

c) Online guessing must be throttled

• User awareness

Design goals

• Minimal performance overhead

• Minimal software changes

• Ease of upgrade

• Backup and recovery

23

SafeKeeper Browser Add-on

24

SafeKeeper Browser Add-on

25

Can users use this effectively?

User study

86-participant on-site user study

Participants recruited using:

• Social media

• Email lists

Broad range of disciplines:

• Computer science

• MBA

• Design

• Consumer psychology

• …

26

Age

18 – 28 years 81%

29 – 38 years 19%

Highest qualification

High school 9%

Bachelors 41%

Masters 34%

PhD 2%

Not specified 14%

Gender

Male 72%

Female 28%

User study

Main study

• 64 participants

Follow-up study

• 20 participants, 2 months later

Control group

• 22 participants, no instructions

Protected Type of spoofing

6 No None

7 No Password field highlighted

3 No
Password field highlighted after

time delay

4 Yes None

5 Yes Other fields highlighted

27

“Does this website use SafeKeeper to protect your password?”

Attempted UI spoofing

28

Attempted UI Spoofing

29

Attempted UI Spoofing

30

Main study results

Average effectiveness: 87%

31

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

In
d

iv
id

u
a

l
s

c
o

re
s

Individual users

Follow-up study results

Main study effectiveness: 93% Follow-up study effectiveness: 91%

32

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

In
d

iv
id

u
a

l
s

c
o

re
s

Individual users

Main study Follow-up study

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

In
d

iv
id

u
a

l
s

c
o

re
s

Individual users

Control group results

Control group effectiveness: 74%

33

Future work: Protecting email addresses

34

Browser

Web Server

key (k)

f

Token

(k)
Email address

Trusted email

service

Can be used for:

• Proof of email address

• Password recovery

Token

(via email)

Token,

Email address

(via TLS)

f(k,email)

Token

Conclusions

• TEEs can help to protect password databases

• Can be integrated into existing systems

• Can achieve web-scale performance

• Can protect real users

• Potential for future work

35

https://ssg.aalto.fi/projects/passwords/

https://ssg.aalto.fi/projects/passwords/

