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Cloud-based checking

• Minimal communication and computation costs

• Database can change frequently

• Database is not revealed to everyone

• User privacy at risk!



Private Membership Test
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The problem: How to preserve end user privacy when 

querying cloud-hosted databases?

Server must not learn contents of client query (q). 

Current solutions (e.g. private set intersection, private information retrieval):

• Single server: expensive in both computation and/or communication

• Multiple independent servers: unrealistic in commercial setting
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Private Membership Test with Trusted Hardware

Trusted Execution Environments (TEEs) are ubiquitous

• ARM TrustZone, Intel SGX, …

Can TEEs provide a practical solution for Private Membership Test?
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Ekberg, Kostiainen, Asokan “Untapped potential of trusted execution environments”, IEEE S&P 2014

https://doi.org/10.1109/MSP.2014.38


Background: Kinibi on ARM TrustZone

*Kinibi: Trusted OS from Trustonic

Kinibi

• Trusted OS from Trustonic

Remote attestation

• Establish a trusted channel

Private memory

• Confidentiality

• Integrity

• Obliviousness
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Background: Intel SGX

CPU enforced TEE (enclave)

Remote attestation

Secure memory

• Confidentiality

• Integrity

Obliviousness only within 

4 KB page granularity
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System Model
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Requirements

Query Privacy: Adversary cannot learn/infer query or response content 

• User can always choose to reveal query content

Accuracy: No false negatives

• However, some false positives are tolerable (i.e. non-zero false positive rate)

Response Latency: Respond quickly to each query

Server Scalability: Maximize overall throughput (queries per second)
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Android App Landscape

On average a user installs 95 apps 

(Yahoo Aviate)
Yahoo Aviate study

Source: 

https://yahooaviate.tumblr.com/image/95795838933

19

Unique Android malware samples

Source: G Data https://secure.gd/dl-en-mmwr201504

Current dictionary size  < 222 entries
Even comparatively “high” FPR (e.g., ~2-10) 

may have negligible impact on privacy

https://yahooaviate.tumblr.com/image/95795838933
https://yahooaviate.tumblr.com/image/95795838933
https://secure.gd/dl-en-mmwr201504


Cloud Scale PMT

Verify Apps: cloud-based service to 

check for harmful Android apps prior to 

installation

“… over 1 billion devices protected by 

Google’s security services, and over 

400 million device security scans were 

conducted per day” 

Android Security 2015 Year in Review

(c.f.  ~2 million malware samples)

20

https://static.googleusercontent.com/media/source.android.com/en/security/reports/Google_Android_Security_2015_Report_Final.pdf


Requirements Revisited

Query Privacy: Adversary cannot learn/infer query or response content 

• User can always choose to reveal query content

Accuracy: No false negatives

• However, some false positives are tolerable (i.e. non-zero false positive rate)

Response Latency: Respond quickly to each query

Server Scalability: Maximize overall throughput (queries per second)
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FPR*  =  2-10

Dictionary size*  =  226  entries  (~ 67 million entries)

* parameters suggested by a major anti-malware vendor

Latency* ~ 1s



Carousel Approach
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Carousel Caveats

1. Adversary can measure dictionary processing time

• Spend equal time processing each dictionary entry

2. Adversary can measure query-response time

• Only respond after one full carousel cycle
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Both impact response latency (recall Requirements)

Therefore, aim to minimize carousel cycle time



How to Minimize Cycle Time?

Represent dictionary using efficient data structure

Various existing data structures support membership test:

• Bloom Filter

• Cuckoo hash

Experimental evaluation required for carousel approach

24



Carousel Approach
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Sequence of differences
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Bloom Filter
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Cuckoo Hash
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Experimental Evaluation

Kinibi on ARM TrustZone

• Samsung Exynos 5250 (Arndale)

• 1.7 GHz dual-core ARM Cortex-A17

• Android 4.2.1 

• ARM GCC compiler and Kinibi libraries

• Maximum TA private memory: 1 MB

• Maximum shared memory: 1 MB

Intel SGX

• HP EliteDesk 800 G2 desktop

• 3.2 GHz Intel Core i5 6500 CPU 

• 8 GB RAM

• Windows 7 (64 bit), 4 KB page size 

• Microsoft C/C++ compiler

• Intel SGX SDK for Windows

29



Experimental Evaluation

Kinibi on ARM TrustZone

• Samsung Exynos 5250 (Arndale)

• 1.7 GHz dual-core ARM Cortex-A17

• Android 4.2.1 

• ARM GCC compiler and Kinibi libraries

• Maximum TA private memory: 1 MB

• Maximum shared memory: 1 MB

Intel SGX

• HP EliteDesk 800 G2 desktop

• 3.2 GHz Intel Core i5 6500 CPU 

• 8 GB RAM

• Windows 7 (64 bit), 4 KB page size 

• Microsoft C/C++ compiler

• Intel SGX SDK for Windows

30

Note: Different CPU speeds and architectures



Performance: Batch Queries
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Performance: Steady State Query Arrival
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Kinibi on ARM TrustZone Intel SGX



Performance: Steady State Query Arrival
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Kinibi on ARM TrustZone Intel SGX

Breakdown points

Beyond breakdown point query response latency increases over time



Evaluation Summary

Cuckoo hash provides best performance
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Kinibi on ARM TrustZone Intel SGX

Cuckoo on (Path) ORAM 0.009 s 0.001 s 

Cuckoo on a Carousel 1.240 s 0.360 s 

Average response latency

Kinibi on ARM TrustZone Intel SGX

Cuckoo on (Path) ORAM 111 q/s 1354 q/s

Cuckoo on a Carousel 1025 q/s 3720 q/s

Sustainable query throughput



Private Contact Discovery in Signal
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Private Contact Discovery in Signal

“An SGX enclave on the server-side would enable a service to perform computations on 

encrypted client data without learning the content of the data or the result of the computation.”

“Private contact discovery using SGX is fairly simple at a high level:

1. Run a contact discovery service in a secure SGX enclave.

2. Clients that wish to perform contact discovery negotiate a secure connection 

over the network all the way through the remote OS to the enclave.

3. Clients perform remote attestation to ensure that the code which is running 

in the enclave is the same as the expected published open source code.

4. Clients transmit the encrypted identifiers from their address book to the enclave.

5. The enclave looks up a client’s contacts in the set of all 

registered users and encrypts the results back to the client.”

36https://signal.org/blog/private-contact-discovery/

https://signal.org/blog/private-contact-discovery/


Private Contact Discovery in Signal

“Unfortunately, doing private computation in an SGX enclave is more difficult than it may 

initially seem.”

“However, the host OS can still see memory access patterns, even if the OS can’t see the 

contents of the memory being accessed.”

“This class of problems has been studied under the discipline of Oblivious RAM (ORAM).”

“There are some elegant generalized ORAM techniques, like Path ORAM, but 

unfortunately they don’t work well for this problem.”

37https://signal.org/blog/private-contact-discovery/
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Private Contact Discovery in Signal

“By keeping one big linear scan over the registered user data set, access to unencrypted 

RAM remains “oblivious,” since the OS will simply see the enclave touch every item once 

for each contact discovery request.”

“The full linear scan is fairly high latency, but by batching many pending client requests 

together, it can be high throughput.”

38https://signal.org/blog/private-contact-discovery/
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Conclusions

Cloud-assisted services raise new security/privacy concerns

• But naïve solutions may conflict with privacy, usability, deployability, …

Cloud-assisted malware scanning

• Carousel approach is promising

• Implementing ORAM on SGX is hard!

In future

• Efficient oblivious data structures for trusted hardware

• New use cases for Carousel (e.g. leaked passwords, …)
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