

The Circle Game: Scalable Private Membership Test Using Trusted Hardware

Sandeep Tamrakar¹ Jan-Erik Ekberg²

1. Aalto University, Finland

Jian Liu ¹ Benny Pinkas ³ Andrew Paverd ¹ N. Asokan ¹

2. Darkmatter (work done at Trustonic)

3. Bar-Ilan University, Israel

Malware Checking

On-device checking

- High communication and computation costs
- Database changes frequently
- Database is revealed to everyone

Malware Checking

On-device checking

- High communication and computation costs
- Database changes frequently
- Database is revealed to everyone

Cloud-based checking

- Minimal communication and computation costs
- Database can change frequently
- Database is not revealed to everyone
- User privacy at risk!

Private Membership Test

The problem: How to preserve end user privacy when querying cloud-hosted databases?

Server must not learn contents of client query (q).

Current solutions (e.g. private set intersection, private information retrieval):

- Single server: expensive in both computation and/or communication
- Multiple independent servers: unrealistic in commercial setting

Private Membership Test with Trusted Hardware

Trusted Execution Environments (TEEs) are ubiquitous

• ARM TrustZone, Intel SGX, ...

Can TEEs provide a practical solution for Private Membership Test?

Ekberg, Kostiainen, Asokan "Untapped potential of trusted execution environments", IEEE S&P 2014

Background: Kinibi on ARM TrustZone

Kinibi

Trusted OS from Trustonic

Remote attestation

• Establish a trusted channel

Private memory

- Confidentiality
- Integrity
- Obliviousness

Background: Intel SGX

CPU enforced TEE (enclave)

Remote attestation

Secure memory

- Confidentiality
- Integrity

Obliviousness only within 4 KB page granularity

Requirements

Query Privacy: Adversary cannot learn/infer query or response content

• User can always choose to reveal query content

Accuracy: No false negatives

• However, some false positives are tolerable (i.e. non-zero false positive rate)

Response Latency: Respond quickly to each query

Server Scalability: Maximize overall throughput (queries per second)

Android App Landscape

On average a user installs 95 apps (Yahoo Aviate) Yahoo Aviate study Source: https://yahooaviate.tumblr.com/image/95795838933

Unique Android malware samples

Source: G Data <u>https://secure.gd/dl-en-mmwr201504</u>

Current dictionary size $< 2^{22}$ entries

Even comparatively "high" FPR (e.g., ~2⁻¹⁰) may have negligible impact on privacy

Cloud Scale PMT

Verify Apps: cloud-based service to check for harmful Android apps prior to installation

"... over 1 billion devices protected by Google's security services, and over 400 million device security scans were conducted per day"

Android Security 2015 Year in Review

(c.f. ~2 million malware samples)

← Security	:
Sign-in	
Security code	
Android Device Manager	
Remotely locate this device Show device location on Android Device Manager	•
Allow remote lock and erase If you lose your device, you can remotely lock or factory reset it with Android Device Manager	•
Verify apps	
Scan device for security threats Regularly check device activity and prevent or warn about potential harm	•
Improve harmful app detection Send unknown apps to Google for better detection	

Requirements Revisited

Query Privacy: Adversary cannot learn/infer query or response content

• User can always choose to reveal query content

Accuracy: No false negatives

• However, some false positives are tolerable (i.e. non-zero false positive rate)

Response Latency: Respond quickly to each query

Server Scalability: Maximize overall throughput (queries per second)

Dictionary size^{*} = 2^{26} entries (~ 67 million entries)

* parameters suggested by a major anti-malware vendor

 $FPR^* = 2^{-10}$

Latency* ~ 1s

Carousel Approach

Dictionary provider

User

Carousel Caveats

- 1. Adversary can measure dictionary processing time
 - Spend equal time processing each dictionary entry
- 2. Adversary can measure query-response time
 - Only respond after one full carousel cycle

Both impact response latency (recall Requirements)

Therefore, aim to minimize carousel cycle time

How to Minimize Cycle Time?

Represent dictionary using efficient data structure

Various existing data structures support membership test:

- Bloom Filter
- Cuckoo hash

Experimental evaluation required for carousel approach

Carousel Approach

Sequence of differences

Bloom Filter

Cuckoo Hash

Experimental Evaluation

Kinibi on ARM TrustZone

- Samsung Exynos 5250 (Arndale)
- 1.7 GHz dual-core ARM Cortex-A17
- Android 4.2.1
- ARM GCC compiler and Kinibi libraries
- Maximum TA private memory: 1 MB
- Maximum shared memory: 1 MB

Intel SGX

- HP EliteDesk 800 G2 desktop
- 3.2 GHz Intel Core i5 6500 CPU
- 8 GB RAM
- Windows 7 (64 bit), 4 KB page size
- Microsoft C/C++ compiler
- Intel SGX SDK for Windows

Experimental Evaluation

Kinibi on ARM TrustZone

- Samsung Exynos 5250 (Arndale)
- 1.7 GHz dual-core ARM Cortex-A17
- Android 4.2.1
- ARM GCC compiler and Kinibi libraries
- Maximum TA private memory: 1 MB
- Maximum shared memory: 1 MB

Intel SGX

- HP EliteDesk 800 G2 desktop
- 3.2 GHz Intel Core i5 6500 CPU
- 8 GB RAM
- Windows 7 (64 bit), 4 KB page size
- Microsoft C/C++ compiler
- Intel SGX SDK for Windows

Note: Different CPU speeds and architectures

Performance: Batch Queries

Performance: Steady State Query Arrival

Kinibi on ARM TrustZone

Intel SGX

Performance: Steady State Query Arrival

Kinibi on ARM TrustZone

Intel SGX

Beyond *breakdown point* query response latency increases over time

Evaluation Summary

Cuckoo hash provides best performance

Average response latency

	Kinibi on ARM TrustZone	Intel SGX
Cuckoo on (Path) ORAM	0.009 s	0.001 s
Cuckoo on a Carousel	1.240 s	0.360 s

Sustainable query throughput

	Kinibi on ARM TrustZone	Intel SGX
Cuckoo on (Path) ORAM	111 q/s	1354 q/s
Cuckoo on a Carousel	1025 q/s	3720 q/s

https://signal.org/blog/private-contact-discovery/

"An SGX enclave on the server-side would enable a service to perform computations on encrypted client data *without learning the content of the data or the result of the computation.*"

"Private contact discovery using SGX is fairly simple at a high level:

- 1. Run a contact discovery service in a secure SGX enclave.
- 2. Clients that wish to perform contact discovery negotiate a secure connection over the network all the way through the remote OS to the enclave.
- 3. Clients perform remote attestation to ensure that the code which is running in the enclave is the same as the expected published open source code.
- 4. Clients transmit the encrypted identifiers from their address book to the enclave.
- 5. The enclave looks up a client's contacts in the set of all registered users and encrypts the results back to the client."

https://signal.org/blog/private-contact-discovery/

"Unfortunately, doing private computation in an SGX enclave is more difficult than it may initially seem."

"However, the host OS can still see *memory access patterns*, even if the OS can't see the contents of the memory being accessed."

"This class of problems has been studied under the discipline of Oblivious RAM (ORAM)."

"There are some elegant generalized ORAM techniques, like Path ORAM, but unfortunately they don't work well for this problem."

"By keeping one big linear scan over the registered user data set, access to unencrypted RAM remains "oblivious," since the OS will simply see the enclave touch every item once for each contact discovery request."

"The full linear scan is fairly high latency, but by batching many pending client requests together, it can be high throughput."

39

ASIACCS 2017 Sandeep Tamrakar, Jian Liu, Andrew Paverd, Jan-Erik Ekberg, Benny Pinkas, N. Asokan. **The Circle Game: Scalable Private Membership Test Using Trusted Hardware**

Cloud-assisted services raise new security/privacy concerns

• But naïve solutions may conflict with privacy, usability, deployability, ...

Cloud-assisted malware scanning

- Carousel approach is promising
- Implementing ORAM on SGX is hard!

In future

- Efficient oblivious data structures for trusted hardware
- New use cases for Carousel (e.g. leaked passwords, ...)

http://arxiv.org/abs/1606.01655

Conclusions